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INTRODUCTION

In the last decade, there has been considerable inter-
est in Ln

 

1 – 

 

x

 

M

 

x

 

MnO

 

3

 

 (Ln = La, Nd, Pr; M = Ca, Sr, Ba,
Pb) substituted manganites, motivated by their colossal
magnetoresistance (MR) [1–3].

To date, most research effort has been concentrated
on the effect of Ln-site substitutions on the MR and 

 

T

 

C

 

of manganites. At the same time, substitutions of 3

 

d

 

transition metals for manganese on the B site may also
influence the Mn

 

3+

 

 : Mn

 

4+

 

 ratio, give rise to local lattice
strain, and, eventually, alter the electrical and magnetic
properties of the material. In this context, Cr substitu-
tion appears interesting. The Cr

 

3+

 

 ion is identical in
electronic configuration to Mn

 

4+

 

 and is Jahn–Teller inac-
tive. It is well known that Cr

 

3+

 

–é

 

2–

 

–

 

Mn

 

4+

 

 magnetic
interaction is favorable for ferromagnetic ordering [4, 5].

Most studies concerned with the effect of chromium
doping have been concentrated on the Ln

 

0.5

 

M

 

0.5

 

MnO

 

3

 

(Ln = La, Nd, Pr, Sm; M = Ca, Sr) manganites [6–10],
in which chromium induces a transition from anti- to
ferromagnetic ordering below room temperature. At the
same time, there is considerable scientific and practical
interest in the study of La

 

0.7

 

Sr

 

0.3

 

Mn

 

1 – 

 

y

 

Cr

 

y

 

O

 

3

 

 materials
with 

 

T

 

C

 

 

 

≥

 

 300 K, which exhibit the strongest magne-
toresistive response near room temperature [11].

In this paper, we report the structural, magnetic,
electrical, and magnetoresistive properties of
La

 

0.7

 

Sr

 

0.3

 

Mn

 

1 – 

 

y

 

Cr

 

y

 

O

 

3

 

 (LSMCr) solid solutions with 0 <

 

y

 

 

 

≤

 

 0.10

 

.

EXPERIMENTAL

LSMCr samples (

 

y

 

 = 0, 0.02, 0.04, 0.06, 0.08, 0.10,
0.12) for this investigation were prepared by solid-state

reactions, using appropriate mixtures of predried extra-
pure-grade La

 

2

 

O

 

3

 

 and Mn

 

2

 

O

 

3

 

 and reagent-grade Cr

 

2

 

O

 

3

 

and SrCO

 

3

 

. The starting mixtures were homogenized
by milling for 8 h in bidistilled water with corundum
grinding media. Next, the mixtures were dried,
screened through a nylon-6 sieve, and fired at 1220 and
1240 K for a total of 4 h with intermediate grindings.
After addition of a binder, the powder was pressed into
disks 10–15 mm in diameter and 3–4 mm in thickness,
which were then sintered at 1570–1670 K for 2 h.

The Mn

 

3+

 

 and Mn

 

4+

 

 contents of the samples were
determined by titrating iodine with a sodium thiosulfate
solution. Iodine in a potassium iodide solution was
replaced by chlorine resulting from the dissolution of a
manganite sample in hydrochloric acid.

X-ray diffraction (XRD) measurements were per-
formed on a DRON 4-07 powder diffractometer (Cu

 

K

 

α

 

radiation). The structural parameters of polycrystalline
samples were refined by the Rietveld profile analysis
method.

Ferromagnetic resonance (FMR) spectra were
recorded on a RADIOPAN spectrometer, using rectan-
gular samples 

 

1 

 

× 

 

1 

 

× 

 

5

 

 mm in dimensions. The applied
magnetic field was parallel to the long axis of the
sample.

The electrical resistivity 

 

ρ

 

 of ceramic samples was
measured by a four-probe technique from 77 to 370 K.
The samples were rectangular in shape, 

 

2 

 

× 

 

3 

 

× 

 

10

 

 mm
in dimensions. Electrical contacts were made by firing
silver paste. Magnetoresistance 

 

(

 

ρ

 

0

 

 – 

 

ρ

 

H

 

)/

 

ρ

 

0

 

 

 

×

 

 100%,
where 

 

ρ

 

0

 

 is the zero-field resistivity and 

 

ρ

 

H

 

 is the resis-
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Abstract

 

—Detailed structural data are presented for La

 

0.7

 

Sr

 

0.3

 

Mn

 

1 – 

 

y

 

Cr

 

y

 

O

 

3

 

 solid solutions with 0 < 

 

y

 

 

 

≤

 

 

 

0.10.
Chromium substitution on the manganese site is shown to reduce the 

 

T

 

C

 

 of the solid solutions at a rate of
4 K/mol % Cr. The 300-K magnetoresistance of La

 

0.7

 

Sr

 

0.3

 

Mn

 

1 – 

 

y

 

Cr

 

y

 

O

 

3

 

 attains 8% in a field of 1.2 MA/m.
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tivity in magnetic field 

 

H

 

, was determined in applied
fields of up to 1.2 MA/m.

RESULTS AND DISCUSSION

XRD examination showed that all of the synthesized
LSMCr materials (

 

0 

 

≤

 

 

 

y

 

 

 

≤

 

 0.1

 

) were single-phase and

had a rhombohedral structure (sp. gr. 

 

R c

 

). The struc-
tural parameters of the LSMCr samples are listed in the
table.

Figure 1 shows the experimentally determined unit-
cell volume and Mn–O bond distance in LSMCr as
functions of chromium content in comparison with
those calculated in different models for charge compen-
sation in chromium-doped manganites. As the input
data, we used the experimental results obtained earlier
for La

 

0.7

 

Sr

 

0.3

 

MnO

 

3

 

 [12]. For each plausible charge
compensation mechanism, we calculated the relative
changes in unit-cell volume and bond distances as func-
tions of chromium content, using Shannon’s system of
ionic radii [13]. In our calculations, manganese was
taken to be present only in the oxidation states 3+ and
4+ [14], whereas the oxidation state of chromium was
free to vary from 2+ to 6+ [15]. As seen in Fig. 1, the
data points fall close to lines 

 

4

 

 and

 

 5

 

, which represent
the following charge compensation mechanisms:

 

2

 

Mn

 

3+

 

  

 

Mn

 

4+

 

 + ë

 

r

 

2+

 

, (

 

I

 

)

 

Mn

 

3+

 

  

 

Cr

 

3+

 

.

 

(

 

II

 

)

 

To find out which mechanism, 

 

I or II, underlies
charge compensation in LSMCr, we analyzed magnetic
data. Figure 2 shows the fraction of manganese ions in
the oxidation state 4+, Mn4+/Mn, calculated as a func-
tion of y for mechanisms I and II. First, we assumed that
Cr is not involved in double exchange (lines I, II). The
fraction of Mn4+ was evaluated from chemical analysis
data for y = 0 and using the model schemes (I) and (II)
for x > 0. Sr-doped manganites are known [16, 17] to
contain a ferromagnetic phase if the Mn4+/Mn ratio lies
in the range 0.18 to 0.50 (dashed region in Fig. 2).
Beyond this range, there is a tendency toward antiferro-
magnetic ordering, which results in antiferromagnetism
or a more complex magnetic structure [16, 17]. It fol-
lows from Fig. 2 that, for y ≥ 0.03, the magnetic phase
is likely to decompose into two phases (lines I, II).
However, according to Ghosh et al. [18] and Gross et al.
[19], LSMCr solid solutions remain ferromagnetic over
the entire composition range studied here (0 ≤ y ≤ 0.10).

3

350.6

V, Å3

350.8

351.0

351.2

(a) 1

2

3
4
5

1.945
0 0.05

ån–O, Å

y

1.950

(b) 1

2

3

4
5

0.10

1.955

1.960

1.965

Fig. 1. (a) Unit-cell volume and (b) Mn–O bond distance as
functions of chromium content for La0.7Sr0.3Mn1 – yCryO3
solid solutions: experimental data (points) in comparison
with calculation results in different charge compensation
models (solid lines): (1) 3Mn4+  2Mn3+ + Cr6+,
(2) 2Mn4+  Mn3+ + Cr5+, (3) Mn4+  Cr4+,
(4) 2Mn3+  Mn4+ + Cr2+, (5) Mn3+  Cr3+.

Crystal data for La0.7Sr0.3Mn1 – yCryO3 solid solutions sintered at 1670 K

y 0 0.02 0.04 0.06 0.08 0.10

a, Å 5.5125(3) 5.5121(5) 5.5120(5) 5.5118(2) 5.5117(2) 5.5115(5)

c, Å 13.3304(4) 13.3303(3) 13.3305(7) 13.3284(3) 13.3289(3) 13.3287(7)

V, Å3 350.80(3) 350.75(2) 350.74(5) 350.66(2) 350.66(2) 350.64(5)

zO(1) 0.460(4) 0.463(4) 0.465(6) 0.468(5) 0.456(3) 0.461(6)

χ2 1.231 1.194 1.235 1.164 1.128 1.195

RB, % 5.67 6.71 8.55 8.48 6.59 6.15

Rf , % 5.97 7.50 8.13 8.00 6.44 6.30

Mn–O, Å 1.9520 1.9515 1.9521 1.9506 1.9508 1.9495
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This is supported by the fact that the shape of their
FMR spectra varies only slightly with composition
(Fig. 3). Thus, we are led to conclude that Cr partici-
pates in double exchange. Then, given that Mn4+ and
Cr3+ have identical electronic configurations (3d3), as
do Mn3+ and Cr2+ (3d4), we obtain identical composi-
tion dependences of the fraction of 3d3 ions (Fig. 2,
lines I', II'). Therefore, magnetic data provide no way of
discriminating between mechanisms I and II. At the
same time, the FMR spectrum of the y = 0.12 sample
shows a peak at B = 20 mT (Fig. 3, spectrum 4), which
can be interpreted as evidence that this sample is mag-
netically inhomogeneous, in accordance with the pro-
posed charge compensation model.

According to earlier results [20], the MR of single-
crystal manganites has a maximum near TC. The tem-
perature dependences of MR and normalized resistivity
in Fig. 4 indicate that chromium substitution for man-
ganese in LSMCr shifts the peak in ρn to lower temper-
atures compared to the peak in MR. The difference in
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Fig. 2. Composition dependences of Mn4+/Mn in
La0.7Sr0.3Mn1 – yCryO3 calculated for the charge compen-

sation mechanisms (I, I') 2Mn3+  Mn4+ + Cr2+ and
(II, II') Mn3+  Cr3+; (I, II) Cr is assumed not to be
involved in double exchange, (I', II') Cr participates in dou-
ble exchange.
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Fig. 3. 77-K FMR spectra of La0.7Sr0.3Mn1 – yCryO3 sam-
ples with y = (1) 0, (2) 0.04, (3) 0.08, and (4) 0.12.
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Fig. 4. Temperature dependences of normalized resistivity
ρn = ρi/ρmax and magnetoresistance for polycrystalline
La0.7Sr0.3Mn1 – yCryO3 with y = 0.02, 0.06, and 0.10.
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the peak ρn and peak MR temperatures may be due to
local structural distortions resulting from chromium
substitution on the manganese site. At low temperatures
(T < TC), the MR of polycrystalline LSMCr rises
steadily with decreasing temperature. This behavior of
MR may be due to spin-dependent scattering of charge
carriers in intergranular regions [21] or spin-polarized
tunneling through grain boundaries [18].

Figure 5 illustrates the effect of chromium doping
on the maximum MR (H = 1.2 MA/m) and Curie tem-
perature of La0.7Sr0.3Mn1 – yCryO3. Over the entire com-
position range studied (0 ≤ y ≤ 0.10), MRmax varies only
slightly, within the range 8–10%. Chromium substitu-
tion on the manganese site reduces TC at a rate of
4 K/mol % Cr.

The effect of magnetic field on the MR of the
La0.7Sr0.3Mn0.9Cr0.1O3 ceramic at 77 and 300 K is illus-
trated in Fig. 6. Note that the 300-K MR is a linear
function of magnetic field, which is crucial for the prac-
tical application of such materials.

CONCLUSIONS

We determined the structure and composition of
La0.7Sr0.3Mn1 – yCryO3 solid solutions in the range 0 <
y ≤ 0.12. Comparing model calculation results and
experimental data, we confirmed the presence of Cr3+ in
these materials. Chromium substitution on the manga-
nese site reduces their TC at a rate of 4 K/mol % Cr. The
300-K MR of La0.7Sr0.3Mn1 – yCryO3 is a linear function
of magnetic field and attains 8% in a field of 1.2 MA/m.
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